a2 United States Patent

Joel et al.

US009342620B2

US 9,342,620 B2
May 17, 2016

(10) Patent No.:
(45) Date of Patent:

(54) LOADING OF WEB RESOURCES
(71) Applicant: CLOUDFLARE, INC., San Francisco,
CA (US)
(72) Inventors: Christopher Stephen Joel, San
Francisco, CA (US); Jason Thomas
Walter Benterou, Burlingame, CA
(US); Lee Hahn Holloway, Santa Cruz,
CA (US); Matthew Browning Prince,
San Francisco, CA (US); Ian Gerald
Pye, Santa Cruz, CA (US)
(73) CLOUDFLARE, INC., San Francisco,
CA (US)

Assignee:

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35

U.S.C. 154(b) by O days.

@
(22)

Appl. No.: 13/648,203
Filed: Oct. 9, 2012

Prior Publication Data

US 2013/0041946 Al Feb. 14,2013

(65)

Related U.S. Application Data

Continuation of application No. 13/253,033, filed on
Oct. 4, 2011, now Pat. No. 8,285,808.

Provisional application No. 61/488,699, filed on May
20, 2011.

(63)

(60)

Int. Cl1.
GO6F 15/16
GO6F 15/00
GO6F 17/30
U.S. CL
CPC . GO6F 17/30905 (2013.01)

(51)
(2006.01)
(2006.01)
(2006.01)

(52)

DNS SYSTEM
140

(58) Field of Classification Search
USPC 709/203, 213, 209, 224, 233, 245, 246,
709/226, 217, 235

See application file for complete search history.
(56) References Cited

U.S. PATENT DOCUMENTS

5,826,025 A 10/1998 Gramlich
6,104,716 A 8/2000 Crichton et al.
6,108,703 A 8/2000 Leighton et al.
6,170,012 B1 1/2001 Cossetal.
6,286,046 Bl 9/2001 Bryant
6,353,855 BI1 3/2002 Hendren, III
6,389,462 Bl 5/2002 Cohen et al.
(Continued)
OTHER PUBLICATIONS

Non-Final Office Action, U.S. Appl. No. 13/253,033, dated Jan. 30,
2012, 10 pages.
(Continued)

Primary Examiner — Jude Jean Gilles
(74) Attorney, Agent, or Firm — Nicholson De Vos Webster
& Elliott LLP

(57) ABSTRACT

A method and apparatus for improving loading of web
resources. A server receives a request for a Hypertext Markup
Language (HTML) document requested by a client network
application. The server retrieves the requested document. The
server automatically modifies objects referenced in the
HTML document that have an external source such that load-
ing of those objects by the client network application will be
deferred. The server inserts a client-side script loader or a
reference to the client-side script loader into the HTML docu-
ment. The client-side script loader is configured to, when
executed by the client network application, attempt to load the
objects that have been deferred. The server transmits the
modified HTML document to the client network application.

24 Claims, 15 Drawing Sheets

AUTH. NAME
SERVER
142

SERVICE
SERVER

125
ZONE FILES
144
DNS
RESPONSE
DNS 152 (IP OF
REQUEST PROXY
150 SERVER)
ANALYZE REQUEST
CLIENT DEVICES REQUEST 154 REQUEST 156
11081
PROXY SERVER
CLIENT 120
NETWORK RESPONSE 162 RESPONSE 158
APPLICATION
115

ANALYZE
X RESPONSE 166

DOMAIN OWNERS
135A-L

—

ORIGIN SERVERS
130A-L

US 9,342,620 B2

Page 2
(56) References Cited 2004/0059951 A1 3/2004 Pinkas et al.
2005/0005027 Al 1/2005 Drouet et al.
U.S. PATENT DOCUMENTS 2005/0018618 Al 1/2005 Mualem et al.
2005/0108517 Al 5/2005 Dillon
6,510,461 B1* 1/2003 Nielsencc.ccooovvr.. 709/224 2005/0114453 Al 5/2005 Hardt
6.654.789 B1 11/2003 Bliss et al. 2005/0120113 Al 6/2005 Bunch et al.
6.820.133 Bl 112004 Grove ef al. 2005/0120201 Al 6/2005 Benaloh et al.
7.058.633 Bl 6/2006 Gnagy et al. 2005/0188079 Al 82005 Motsinger et al.
7.103.651 B2 9/2006 Bohannon et al. 2005/0188080 Al 8/2005 Motsinger et al.
7127493 Bl 10/2006 Gautier 2005/0188221 Al 8/2005 Motsinger et al.
7.178.166 Bl 2/2007 Taylor et al. 2005/0267869 Al 12/2005 Horvitz et al.
7,231,458 B2 6/2007 Tenereillo et al. 2006/0095578 Al 5/2006 Paya et al.
7,240,100 Bl 7/2007 Wein et al. 2006/0101516 Al 5/2006 Sudaharan et al.
7,269,649 Bl 9/2007 Brown et al. 2006/0136374 Al 6/2006 Shelest et al.
7,330,908 B2* 2/2008 Jungckccoccoorrirrinnnn 709/246 2006/0218289 Al 9/2006 Assad
7,363,582 B2 4/2008 Sylthe et al. 2006/0253458 Al 11/2006 Dixon et al.
7.366.793 B2 4/2008 Kenner et al. 2006/0288119 Al 12/2006 Kimetal.
7373.500 B2 5/2008 Ramelson et al. 2007/0022082 Al 1/2007 Azagury et al.
7392325 B2 6/2008 Grove et al. 2007/0039053 Al 2/2007 Dvir
7,395:355 B2 7/2008 Afergan et al. 2007/0050703 Al* 3/2007 Lebelccccoevininn 715/513
7.409.708 B2 8/2008 Goodman et al. 2007/0097976 Al 5/2007 Wood et al.
7.418.733 B2 /2008 Connary et al. 2007/0101405 A1 52007 Engle et al.
7.424,741 Bl 9/2008 Grimm et al. 2007/0130151 Al 6/2007 Wiles
7.430,607 B2 9/2008 Bolles et al. 2007/0143496 Al 6/2007 Golovinsky et al.
7454457 Bl 11/2008 Lowery et al. 2007/0180147 Al 82007 Leigh
7467408 B1 12/2008 O’Toole 2007/0186282 Al 8/2007 Jenkins
7480699 B2 1/2009 Alam ef al. 2007/0198531 Al 82007 Lim et al.
7.508.767 B2 3/2009 Shinomiya 2007/0255821 Al 11/2007 Geetal.
7.562.153 B2 7/2009 RBiliris et al. 2007/0266145 Al 11/2007 Nesbitt et al.
7,584,500 B2 9/2009 Dillon et al. 2007/0271614 Al 11/2007 Capalik
7’606’915 Bl 10/2009 Calinov et al. 2007/0283247 Al 12/2007 Brenneman et al.
7647424 B2 1/2010 Kim ctal. 2008/0005659 Al 1/2008 Fujimaki
7,684,394 Bl 3/2010 Cutbill et al. 2008/0016570 Al 1/2008 Capalik
7,689,665 B2* 3/2010 Lipton etal.cccooee.. 709/217 2008/0072293 Al 3/2008 D’Urso
7,783,741 B2 8/2010 Hardt 2008/0077982 Al 3/2008 Hayler et al.
7,827,311 B2 11/2010 Cooley et al. 2008/0109657 Al 5/2008 Bajaj et al.
7.849.502 Bl 12/2010 Bloch et al. 2008/0183573 Al 7/2008 Muschetto
7'849.507 Bl 12/2010 Bloch et al. 2008/0263670 A1 10/2008 Stavrica
7.895.653 B2 2/2011 Calo et al. 2008/0282338 Al 11/2008 Beer
7’904:959 B2 3/2011 Sidiroglou et al. 2008/0301766 Al* 12/2008 Makino et al. . 726/1
7,936,682 B2 5/2011 Singh et al. 2009/0083244 Al* 3/2009 Lietal ..o 707/4
7.945.678 Bl 5/2011 Skene 2009/0089119 Al 4/2009 Ranjan
8015605 B2 9/2011 Yegneswaran et al. 2009/0089417 Al 4/2009 Giffin et al.
8,024,468 B2 9/2011 Raciborski et al. 2009/0089657 Al 4/2009 Davis
8,028,091 B1* 9/2011 Kleinfelter HO4L 29/12066 2009/0144421 Al 6/2009 Bunch
709/204 2009/0144829 Al 6/2009 Grigsby et al.
8.065.722 B2 11/2011 Barford et al. 2009/0287653 Al 11/2009 Bennett
8112471 B2 2/2012 Weietal. 2009/0292925 A1 11/2009 Meisel
8127356 B2 2/2012 Thiele et l. 2009/0300162 Al 12/2009 Demarie et al.
$.141.132 B2 3/2012 Oliver of al. 2009/0300206 Al 12/2009 Todorov
8201.081 B2 6/2012 Stroe et al, 2009/0328208 Al 12/2009 Peters
8,275,790 B2 9/2012 Fredricksen et al. 2010/0031315 Al 2/2010 Fenget al.
8,285,808 B1* 10/2012 Joel etal. ..ccooovrrrrvns 709/213 2010/0067377 Al 3/2010 Wang et al.
8.286.246 B2 10/2012 Zhou et al. 2010/0076851 Al 3/2010 Jewell
8375449 Bl 2/2013 Zhou et al. 2010/0077444 A1 3/2010 Forristal
8381292 Bl 2/2013 Warner et al. 2010/0138921 Al 6/2010 Naetal.
8443’450 Bl 5/2013 Zhou et al. 2010/0146259 Al* 6/2010 Tatham ... 713/152
8.468.597 Bl 6/2013 Warner et al. 2010/0169465 A1 7/2010 Amidon et al.
8,489,670 B1* 7/2013 Fletcheretal. ... 709/203 2010/0180333 Al 7/2010 Bono et al.
2002/0019821 Al* 2/2002 Rosenbluth G06Q 10/02 2010/0229223 Al 9/2010 Shepard et al.
1 2010/0242106 Al 9/2010 Harris et al.
2002/0042841 A1 4/2002 Nishio et al. 2010/0250779 Al 9/2010 B’Far et al.
2002/0087696 Al 7/2002 Byrnes 2010/0274645 Al 10/2010 Trevithick et al.
2002/0124101 Al 9/2002 Schaeck 2010/0293448 Al 11/2010 Rand et al.
2002/0133509 Al 9/2002 Johnston et al. 2010/0325287 Al 12/2010 Jagadeeswaran et al.
2002/0165466 Al 11/2002 Givens et al. 2011/0029899 Al 2/2011 Fainberg et al.
2003/0014539 Al 1/2003 Reznick 2011/0137973 Al 6/2011 Wei et al.
2003/0023754 A1 1/2003 Eichstadt et al. 2011/0209076 Al 82011 Saxena et al.
2003/0055994 Al 3/2003 Herrmann et al. 2011/0231482 Al 9/2011 Benna
2003/0069968 Al 4/2003 O’Neil et al. 2011/0282997 Al 11/2011 Prince et al.
2003/0079027 Al 4/2003 Slocombe et al. 2011/0283359 Al 11/2011 Prince et al.
2003/0135548 Al 7/2003 Bushkin 2011/0296509 Al 12/2011 Todorov
2003/0177196 Al 9/2003 Bhasin et al. 2012/0022942 Al 1/2012 Holloway et al.
2003/0208570 Al 11/2003 Lapidous 2012/0023090 Al 1/2012 Holloway et al.
2003/0208600 Al 11/2003 Cousins 2012/0030559 Al 2/2012 Manion et al.
2003/0225873 Al 12/2003 Wade 2012/0054316 Al 3/2012 Piazza etal.
2004/0006710 Al 1/2004 Pollutro et al. 2012/0066586 Al 3/2012 Shemesh
2004/0015725 Al 1/2004 Boneh et al. 2012/0066759 Al 3/2012 Chen et al.
2004/0044912 Al 3/2004 Connary et al. 2012/0069845 Al 3/2012 Carney et al.

US 9,342,620 B2
Page 3

(56) References Cited
U.S. PATENT DOCUMENTS

2012/0096558 Al
2012/0116896 Al
2012/0117239 Al
2012/0117458 Al
2012/0117641 Al
2012/0117649 Al
2012/0226972 Al
2012/0254333 Al

4/2012 Evrard

5/2012 Holloway et al.

5/2012 Holloway et al.

5/2012 Holloway et al.

5/2012 Holloway et al.

5/2012 Holloway et al.

9/2012 Fainberg et al.
10/2012 Chandramouli et al.
2013/0041946 Al* 2/2013 Joeletal.cccoceona 709/203
2013/0145421 Al 6/2013 Kougiouris et al.

OTHER PUBLICATIONS

Notice of Allowance, U.S. Appl. No. 13/253,033, dated Jun. 1,2012,
9 pages.

International Search Report and Written Opinion, Application No.
PCT/US12/38906, dated Nov. 14, 2012, 7 pages.

Roberts P., Phishing Attacks Use Word as Bait, Inforworld, May 29,
2006; 28(22):18, Available from: Internet and Personal Computing
Abstracts, Ipswich, MA., Accessed Mar. 4, 2013, p. 18.

Enhanced Security Web Proxy and Reverse Web Proxy; Intellectual
Property (IP) Publication, Nov. 4, 2008; Web Jul. 17, 2013, 7 pages,
downloaded from http://ip.com/pdf/ipcompad/TPCOMO000176082D.
A quick guide to SSI (server side includes), 2005, 5 pages, down-
loaded from http://www.easywebtutorials.com/tutorials/ssi.html.
Belshe, et al., SPDY Protocol, draft-mbelshe-httpbis-spdy-00, Net-
work Working Group, Internet-Draft, Feb. 2012, 51 pages.

Snell, HTTP Multipart Batched Request Format, draft-snell-http-
batch-01, Individual Submission, Internet-Draft, Jun. 12, 2009, 7
pages.

* cited by examiner

US 9,342,620 B2

Sheet 1 of 15

May 17, 2016

U.S. Patent

Tvoel
SH3IAYIS NIDIHO

TVEEL

SHIANMO NIYWOA

991 ISNOJS3
JZATVNY

l "Old

1

8G1 ISNO4S3d

'Y
14

r N

9S1 1S3INDIY

0zt
d3IAH3S AXOdd

oL
1S3N03Y IZATYNY

43

al

¢91 IASNOJS3d

A 4

¥S1 1S3ND3Y

d3AY3S
30INH3S

Sh
NOILVOITddV
MHOMLAN
AIN3MO

[-vOL L
S3AJIAIA LNFIND

(43Ad3s oGl
AXOYd 1s3ano3ay
40 dI) 251 SNa
3SNOJSaY
SNQ
(228
S3714 INOZ
vl
ISENNSELS
JAVN "HLNY

_

vl
WILSAS SNA

U.S. Patent May 17, 2016 Sheet 2 of 15 US 9,342,620 B2

CLIENT PROXY ORIGIN ORIGIN
NETWORK SERVER SERVER SERVER
APP. 115 120 130A 1308

i ESTABLISH TCP i
! CONNECTION 205

b
£

r

)

L)
REQUEST
| (HT%,'L) 10 i REQUEST
(| » (HTML) 212
[} r
i i RESPONSE
e | | L (HTML) 214
CONNK | r
505 | TIODIFY HTML
: FOR PAGE 216
: ACCELERATIO
]
L 1

RESPONSEv] HTML

(MOD. HTML) 21 LOADER 222

HTML =

MOD.
OBJECT(S) 224

HTML

Bt R it

LOAD HTML,
DEFER OBJECT
LOADING

230

ESTABLISH TCP
CONNECTION 231

N

)
1
'
1
'
]
'
]
'
]
K
14}
'
[
M
M
]
1

S g) P MUl PRI, AR

|
1
IA
L
|
!
| REQUEST (PACKAGE) 232
1
' PACKAGE IN
) YES /' CACHE AND -
v RESPONSE NOT
TP | (PACKAGE) 235 EXPIRED?
CONN. | | { ,
231 § ! |
' OBJECT LIST ' NO
! (01-03) 236 !
]]
| OBJECT O1 '
i 237 :
]
]
i OBJECT 02 !
! 238 '
. OBJECT 03 COTO 240 .
. 239 :
FIG. 2A

U.S. Patent May 17, 2016 Sheet 3 of 15 US 9,342,620 B2

CLIENT PROXY ORIGIN ORIGIN
NETWORK SERVER SERVER SERVER
APP. 115 120 130A 130B

SEPARATE
OBJECT URLS
(01-03)

1
ACCESS OBJECT 01
FROM CACHE 242

RESPONSE (STREAM
OBJECTS) 244

240

REQUEST (OBJECT 02) 246

-

LIST (01-03) M4~ 236

OBJECT O1 M~ 237 REQUEST (OBJECT 03) 248

———pm e m g ==L

RESPONSE (OBJECT 03)
250

STORE OBJECT 03IN\ A 555
CACHE

STREAM OBJECT 03 254

TCP
CONN.
231

LIST (01-03) M 236
OBJECT O1 M~ 237

OBJECT O3 M 239 RESPONSE (OBJECT 02)

256
STORE OBJECT 02IN\ A 558
CACHE

STREAM OBJECT 02 260

————————————=L

ittt bttt ety Sttt

1

r

LIST (01-03) M~ 236
OBJECT O1 M~ 237
OBJECT O3 M 239
OBJECT 02 M 238

PREDIIGEE PSS L

TEAR DOWN TCP
CONNECTION 231

- = = =] = T = = = =]

L etttk ahalr sttt

P G

FIG. 2B

U.S. Patent

May 17, 2016

FIG. 3

ARE THERE
ADDITIONAL
SCRIPT TAGS IN
BUFFER?

370

Sheet 4 of 15 US 9,342,620 B2
RECEIVE HTML FROM
ORIGIN SERVER [~ 310
L/~ 320
INSERT SCRIPT YES IS PAGE 315 RETURN ~ 305
LOADER IN <HEAD> ACCELERATION UNMODIFIED HTML
OF HTML DOCUMENT ON? BUFFERS
375
_,| READ NEXT BUFFER FLUSH BUFFER TO
OF HTML DOCUMENT [~ 330 VISITOR/BROWSER
YES INSPECT FIRST
DOES BUFFER | sogs:;&e. IN
CONTAIN
SCRIPT TAGS? v 350
FLUSH BUFFERTO || 4,0
VISITOR/BROWSER
REWRITE 355 305
SCRIPT DOES SCRIPT
345
TYPE AND TAG INCLUDE INSPECT
ARE WE AT END REINSERT NO REPLAGE NEXT SCRIPT
OF DOCUMENT? INTO OVERRIDE? TAG
BUFFER 360
YES
YES
FINISH

NO

U.S. Patent May 17, 2016 Sheet 5 of 15 US 9,342,620 B2

LOAD STANDARD
JAVASCRIPT I~ 410
PACKAGE FOR PAGE

SEND REQUEST TO

IS PACKAGE IN PROXY SERVER FOR
415 BROWSER STANDARD /- 420
CACHE? JAVASCRIPT

PACKAGE FOR PAGE

YES

SERVER

RETURN
AN ERROR
OBJECT?

NO

4304 READ PACKAGE
FROM BROWSER
CACHE

LOAD MANIFEST

FROM U~ 435

JAVASCRIPT
PACKAGE

& 455
I~ 450 v
IS SCRIPT READ DEFERRED PAGE
OBJECT IN SCRIPT OBJECTS FINISHED
MANIFEST? ON PAGE RENDERING?
NO
NO
YES READ SCRIPT
OBJECT FROM
JAVASCRIPT |~ 465
PACKAGE 475
REQUEST |~ 460 L
SCRIPT INSERT SCRIPT DESFCERFTS'TED FINISH
OBJECT FROM OBJECT ON PAGE OBJIECTS ON
SERVER DAGE?
READ NEXT VES
DEFERRED
SCRIPT OBJECT |~ 450

FIG. 4

U.S. Patent May 17, 2016 Sheet 6 of 15 US 9,342,620 B2
RECEIVE REQUEST FROM CLIENT/
BROWSER FOR PACKAGE U~ 510
s 520 | 515
HAS IS SPLIT INDIVIDUAL
CACHE PACKAGE URLS FROM 525
EXPIRED? IN CACHE? |_. PACKAGE
NO|
READ FIRST URL 530
RETURN PACKAGE [5i° 535
TO BROWSER/ NO AAS YES 'S URLIN READ I~ 575
CLIENT CACHE ACHE? NEXT URL
J, EXPIRED? CACHES
545 | APPEND MULTI- YES NO
FINISH PART DIVIDER
REQUEST URL
VIA INTERNET [955
RETURN OBJECT
FROM CACHE TO CREATE |} 3560
550 BROWSER/CLIENT LISTENER FOR
IN EXISTING REQUEST/
CONNECTION RESPONSE
MORE 565
y URLS IN
\ PACKAGE?
580N FormAT
RESPONSE SO CREATE NEW NO
FINISH CLIENTCAN W— PACKAGE AND
LOGATE CACHE [~ 570
OBJECTS

FIG. 5

U.S. Patent

May 17, 2016

610 A

620

625 N

630

Sheet

RETRIEVE LOGS FOR
ALL OBJECTS

x

7 of 15 US 9,342,620 B2

LOADED ON PAGES
FOR A SITE

|

CREATE INDEX FOR
EACH OBJECT BASED
ON FREQUENCY OF
LOAD AND SCRIPT
SIZE

|

RETRIEVE FIRST
OBJECT ON LIST

IS INDEX

RETRIEVE NEXT
OBJECT ONLIST

YES

V* 645

b 4

VALUE ABOVE
THRESHOLD?

ARE THERE

YES

126

ADD OBJECT TO
PACKAGE FOR SITE

> 635

OTHER
OBJECTS?

&

640

CREATE MANIFEST FOR
BUNDLE OF OBJECTS

V> 650

I

CONCAT MANIFEST
AND OBJECTS
SEPARATED BY
DIVIDER STRING

/655

SAVE AND DISTRIBUTE
BUNDLE TO EDGE
NODES

y~ 660

FIG. 6

U.S. Patent

May 17, 2016

Sheet 8 of 15
PAGE LOAD L 710
COMPLETE

l

READ ALL IMAGES IN
THE DOM WITH
NAME/SIZE/URL

INFORMATION

S 720

SEND MANIFEST OF
OBJECTS AND PAGE
INFORMATION TO
PROXY SERVER IN
BACKGROUND

r 730

FIG. 7

US 9,342,620 B2

U.S. Patent

May 17, 2016

Sheet 9 of 15

HTML OF PAGE
LOADED INTO DOM

L~ 810

l

READ URLS OF EACH
SCRIPT ON PAGE

/~ 815

.

EXAMINE FIRST
SCRIPT URL ON
PAGE

I~ 820

840 V]

EXAMINE NEXT
SCRIPT URL

l 825
S

IS URL IN
. LOCAL

STORAGE
CACHE?

YES

YES MORE SCRIPTS\(

ON PAGE?

lNO

US 9,342,620 B2

NO

ADD URL TO L/~ 830
REQUEST QUEUE

835

d

SEND LIST OF
REQUESTED URLS
TO SERVER

/845

TO 850

FIG. 8A

U.S. Patent May 17, 2016 Sheet 10 of 15 US 9,342,620 B2

FROM 845

RECEIVE THE SCRIPTS IN ONE
RESPONSE FROM SERVER {850

l

SEPARATE SCRIPTS INTO
DISTINCT PIECES I~ 855

ATTEMPT TO STORE IN LOCAL

STORAGE " 860
865
g
IS LOCAL STORAGE FULL?
875

PERFORM CACHE EVICTION IF STORE IN LOCAL STORAGE | 870

POSSIBLE
l NO l
LOCAL STORAGE
880 < STILL FULL? WAIT FOR EXECUTION L~ 890

vES l ’[

STORE EXCESS CONTENT IN
MEMORY U~ 885

FIG. 8B

U.S. Patent May 17, 2016 Sheet 11 of 15 US 9,342,620 B2

RECEIVE REQUEST FROM CLIENT |~ 910
FOR LIST OF URLS

HAS SPLIT
CACHE INDIVIDUAL URLS |~ 925
EXPIRED? FROM LIST
NO I
READ FIRST URL p~ 930
h 4
& 940
RETURN CACHED |~ gg5 & 935
COPY TO CLIENT
NO C/TéﬁE IS URL IN READ |, g75
l EXPINED? CACHE? NEXT URL
1 y §
FINISH 945 ~| APPEND MULTI- YES NO
PART DIVIDER
h 4
REQUEST URL | gs5
RETURN OBJECT VIA INTERNET
FROM CACHE TO T
950 | BROWSER/CLIENT
IN EXISTING LISTENER FOR | 960
CONNECTION é
REQUEST/
RESPONSE

980 FORMAT

RESPONSE SO CREATE NEW
FINISH CLIENT CAN [LIST AND CACHE 970
LOCATE

OBJECTS

FIG. 9

U.S. Patent

10&0

May 17, 2016 Sheet 12 of 15 US 9,342,620 B2
SOES 1010
BROWSER
TAKE ALT. IS PAGE
ACTIONS 8:22251(ONREADY? NO
DETECTION?

FETCH SOURCE
FROM REMOTE
SERVER

YES

LOAD LIST OF

BEEN
PRELOADED?

YES

HAS SOURCE \YES

) ELEMENTS OF TYPE

TEXT/DJS (DEFER JS)

I~ 1020

l

READ FIRST ITEM ON
LIST

I~ 1025

JAVASCRIPT

REPLACE TYPE TEXT/
DJS WITH TYPE TEXT/

I~ 1030

DOES ITEM 1
HAVE SRC

FIELD?

NO

APPEND

SOURCE TO
OBJECT

ADDITIONAL
ITEMS ON

\1

035 I~ 1045

READ NEXT
ITEM ON LIST

040

LIST?

S
1055

FIG.

lNo

FINISH

10

/ YES

U.S. Patent May 17, 2016 Sheet 13 of 15 US 9,342,620 B2

BROWSER LOADS
HTML CONTENT

l

BROWSER LOADER
CREATES LIST OF P~ 1115
OBJECTS ON PAGE

v 1110

REQUEST PACKAGE

FROM SERVER WITH |~ 1120

LIST OF OBJECT
URLS

RECEIVE RESPONSE |p 1125
FROM SERVER

1130

WAS
RESPONSE
COMPLETE?

READ UNTIL DIVIDER |~ 1140
FROM TOG

READ TABLE OF |~ 1135
CONTENTS FROM
END OF FILE YES

DIVIDE FILE BASED CREATE OBJECT
ONBYTE DIVIDERS |~ 1160 FROM PREVIOUS
FROM TOG DIVIDER TO NEXT |p 1145
DIVIDER

FOR EACH SECTION,
CREATE NEW ™ 1165
OBJECT

IS RESPONSE
COMPLETE?

1150

ADD NEW OBJECTS 1155
TO BROWSER DOM

FIG. 11

U.S. Patent May 17, 2016 Sheet 14 of 15 US 9,342,620 B2

HITP/1.1 200 OK

Server: cloudflare-nginx

Date: Tue, 03 May 2011 18:55:26 GMT 1220 .
1215 Content-Type: multipart/bag; boundary=3868cbcfd698fhbd

Transfer-Encoding: chunked

Connection: keep-alive

--3868cbcfd698fb5d
Bag: 2572221-11200|text/bag-manifest
L S WAV N LN J

1225 1230 1235 1240 1525

chttp://www.example.com/smalll.Js
:http://www.example.com/pausel.js.php
thttp://www.example?.com/small3.js 1252
:http://www.example3.com/small2.js
chttp://www.exampled.com/404.php

1250 <

SN O

r --3868cbcfdb98fh5d
Bag: 79139]/0]200|application/x-Javascript|7200
1255 \;EEB 1254
function smalll (bleh) { return bleh;
}
--3868cbcfd698fbbd
Bag: 79139]21200|application/x-Javascript|7200

function small3(bleh) { return bleh;

}

--3868chcfd6h98fb5d

12704 Bag: 79139[31200]application/x-javascript|7200

function small2 (bleh) {return bleh;
}
--3868cbcfd698£fbbd
Bag: 44|O|4\é9j|text/html; charset=1s0-8859-117200
1265 1264
--3868cbhbcfd698fbbd
Bag: 79139]11200]application/x-Javascript|7200

function pausel (bleh) {return bleh;

}
--3868cbcfdb98fbbd--

FIG. 12

US 9,342,620 B2

Sheet 15 of 15

May 17, 2016

U.S. Patent

€L Old

06El
(IYNOILdO)
(013 ™I 1AM
‘HLOO13NTg "9
(S)43IAITOSNVHL
SSITIHIM

0ser —
('013 ‘advogAaM 0/€1
“JOMLNOD 3DIA3A AYI4SIA
d0SdND ‘0OIN ¥ H3TI0HLNOD
"9'3) $30IA3A O/l AV1dSId

H

H

H

0S¢l (s3)sng
A A H H
A 4 A\ 4
ovel
(WDd 0cel
‘AHOWINW HSVY14 ocer Gzel Eomwuoomn_omo_s_
‘IAINA QYVH AHOWIN A1ddNS ¥3mod '©'3) WILSAS
“©'3) AMOW3W ONISSID0Hd
J1LYIOANON
olcr

00€1

(I¥YNOILdO) FHOVD

US 9,342,620 B2

1
LOADING OF WEB RESOURCES

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is a continuation of application Ser. No.
13/253,033, filed Oct. 4, 2011, which claims the benefit of
U.S. Provisional Application No. 61/488,699, filed May 20,
2011, which are hereby incorporated by reference.

FIELD

Embodiments of the invention relate to the field of network
processing; and more specifically, to improving the perfor-
mance of loading web resources.

BACKGROUND

A web page is made up of a number of objects. These
objects can include the HTML of the page, the images, the
CSS that defines the layout, and also any client-side scripting
code (e.g., Javascript, VBScript). Each of the non-HTML
objects is loaded after the initial HTML of the page is loaded.
In other words, the web browser initially fetches the HTML,
then it requests all the other objects that are included in the
HTML.

This creates a number of challenges. One is that each
request for an object typically requires a separate TCP con-
nection to be setup and then torn down when the transaction
is complete, which is time consuming Another challenge is
that an object included in the page (e.g., a client-side scripting
code or other object with an external source) can effectively
block the rendering of the page while it is executed. Since
client-side scripts can alter the way the page is drawn, the
client (e.g., web browser) defers rendering the page until after
the script has loaded and executed before the basic HTML is
rendered. The result is that pages load more slowly. For
example, a page may partially load and then stall while wait-
ing for a non-HTML object to render. This problem can be
amplified when the page includes multiple objects hosted on
multiple domains, which typically requires multiple TCP
connections be established in order to access those objects.

SUMMARY

A method and apparatus for improving the performance of
loading web resources is described. In one embodiment of the
invention, the loading of objects that have an external source
(e.g., objects that have a “src” attribute) is deferred until the
HTML has rendered. For example, the loading of client-side
scripts or other objects (e.g., CSS, images, styles, classes,
Flash elements, sound files, etc.) that have an external source
is deferred until the HTML has rendered. Thus, the HTML
content of the page is rendered, and then the deferred objects
are loaded thereby reducing the perceived loading time of the
web page since the core content of the HTML page is loaded
before the deferred objects.

In one embodiment of the invention, multiple object que-
ries (e.g., multiple client-side script queries) are packaged
into a single request using a single TCP connection to a proxy
server thereby reducing the number of TCP connections
required. The responses for the multiple object queries are
streamed to the client through the single TCP connection as
they are retrieved (which means that that the requested
objects may be returned asynchronously). This reduces the
time for loading the page (in particular the client-side scripts)

10

15

25

35

40

45

2

that would have been made by initiating multiple TCP
requests for multiple resources.

BRIEF DESCRIPTION OF THE DRAWINGS

The invention may best be understood by referring to the
following description and accompanying drawings that are
used to illustrate embodiments of the invention. In the draw-
ings:

FIG. 1 illustrates an exemplary system in accordance with
one embodiment of the invention;

FIGS. 2A-B are data flow diagrams illustrating exemplary
operations of the page acceleration service according to one
embodiment;

FIG. 3 is a flow diagram illustrating exemplary operations
for modifying an HTML document for improved loading
performance according to one embodiment;

FIG. 4 is a flow diagram illustrating exemplary operations
for a client network application requesting a standard pack-
age of objects (e.g., client-side scripts) for a site or page
according to one embodiment;

FIG. 5 is a flow diagram illustrating exemplary operations
for a proxy server responding to a request from a client
network application for a standard client-side script package
according to one embodiment;

FIG. 6 is a flow diagram illustrating exemplary operations
for determining which objects are to be included in a standard
object package according to one embodiment;

FIG. 7 is a flow diagram illustrating exemplary operations
for sending a manifest of objects and their respective
attributes to the proxy server according to one embodiment;

FIG. 8A is a flow diagram illustrating exemplary opera-
tions for requesting object(s) that have been deferred accord-
ing to one embodiment;

FIG. 8B is a flow diagram illustrating exemplary opera-
tions performed responsive to receiving a dynamic object
package reply according to one embodiment;

FIG. 9 is a flow diagram illustrating exemplary operations
performed on the proxy server 120 when processing a request
from a client network application for a dynamic object pack-
age according to one embodiment;

FIG. 10 is a flow diagram illustrating exemplary operations
performed by a client network application for loading scripts
after the page has loaded according to one embodiment;

FIG. 11 illustrates exemplary operations performed by a
client network application processing responses from the
proxy server including multiple resources corresponding to
multiple URLs according to one embodiment;

FIG. 12 illustrates an exemplary package response accord-
ing to one embodiment; and

FIG. 13 illustrates an exemplary computer system used in
accordance with some embodiments.

DESCRIPTION OF EMBODIMENTS

In the following description, numerous specific details are
set forth. However, it is understood that embodiments of the
invention may be practiced without these specific details. In
other instances, well-known circuits, structures and tech-
niques have not been shown in detail in order not to obscure
the understanding of this description. Those of ordinary skill
in the art, with the included descriptions, will be able to
implement appropriate functionality without undue experi-
mentation.

References in the specification to “one embodiment,” “an
embodiment,” “an example embodiment,” etc., indicate that
the embodiment described may include a particular feature,

US 9,342,620 B2

3

structure, or characteristic, but every embodiment may not
necessarily include the particular feature, structure, or char-
acteristic. Moreover, such phrases are not necessarily refer-
ring to the same embodiment. Further, when a particular
feature, structure, or characteristic is described in connection
with an embodiment, it is submitted that it is within the
knowledge of one skilled in the art to effect such feature,
structure, or characteristic in connection with other embodi-
ments whether or not explicitly described. In the following
description and claims, the terms “coupled” along with its
derivatives, may be used. “Coupled” is used to indicate that
two or more elements, which may or may not be in direct
physical or electrical contact with each other, co-operate or
interact with each other.

A method and apparatus for improving the performance of
loading web resources is described. In one embodiment of the
invention, the loading of objects that have an external source
(e.g., a “src” attribute) is deferred until the HTML has ren-
dered. For example, the loading of client-side scripts or other
objects (e.g., CSS, images, styles, classes, Flash elements,
sound files, etc.) that have an external source is deferred until
the HTML has rendered. Thus, the HTML content of the page
is rendered, and then the deferred objects are loaded thereby
reducing the perceived loading time of the web page since the
core content of the HTML page is loaded before the deferred
objects.

In one embodiment of the invention, multiple object que-
ries (e.g., multiple client-side script queries) are packaged
into a single TCP request to a proxy server thereby reducing
the number of TCP connections required. The responses for
the multiple object queries are streamed to the client through
the single TCP connection as they are retrieved (which means
that that the requested objects may be returned asynchro-
nously). This reduces the time for loading the page (in par-
ticular the client-side scripts) that would have been made by
initiating multiple TCP requests for multiple resources.

Some embodiments of the invention are employed using an
Internet-based proxy system. The page acceleration service is
available over the Internet and does not require customers
(e.g., owners of a domain and/or personnel working on behalf
of domain owner) to install hardware or software and pro-
vides at least a portion of the improved loading of web
resources described herein (sometimes referred to as page
acceleration). Some embodiments of the invention employ a
proxy server that modifies HTML documents to enable them
for page acceleration, which will be described in greater
detail later herein.

In some embodiments, the proxy server is provisioned
through DNS (Domain Name System). For example, DNS
record(s) are changed for a website such that DNS resolution
requests for the corresponding domain points to the proxy
server. In some embodiments, the authoritative name server
of'a domain is changed to an authoritative name server of the
service and individual DNS records are changed to point to
the proxy server. In other embodiments, customers of the
service change individual DNS records to point to a proxy
server (or point to other domain(s) that point to a proxy server
of'the service). For example, the customers may change their
DNS records to point to a CNAME that corresponds with a
proxy server of the service.

In another embodiment, the visitors (e.g., users of client
devices) change their DNS provider to a DNS provider of the
service (typically changed through operating system set-
tings). DNS requests therefore are sent to the DNS provider of
the service, which point to the proxy server regardless of
whether the domain in the DNS requests resolves to the proxy

15

35

40

45

50

55

60

65

4

server. In order to access the origin server, the proxy server
looks up the authoritative name server and performs DNS
resolution as normal.

In another embodiment, the client network application
(e.g., browsers) are configured to transmit web requests to the
proxy server regardless of whether the requests resolve to the
proxy server. The client network application may be config-
ured with an exclusion list that lists domains for which
requests are not sent to the proxy server (all other requests
are) or an inclusion list that lists domains for which requests
are to be sent to the proxy server (all other requests are not
sent to the proxy server).

FIG. 1 illustrates an exemplary system in accordance with
one embodiment of the invention. The domain owners
135A-L are customers and their domains point to the proxy
server 120. The authoritative name servers for each the
domains of the domain owners 135A-I have been changed to
the authoritative name server 142, which is associated with
the service provided through the proxy server 120. It should
be understood that the backup authoritative name servers
serving the domains may also be changed. The zone file
records for the domains of the domain owners 135A-L are
also changed such that DNS resolution requests for the
domains owned by the domain owners 135A-L, which corre-
spond with the origin servers 130A-L respectively, resolve to
the proxy server 120. In one embodiment, customers (e.g., the
domain owners 135A-L or other entity (e.g., web administra-
tors) on behalf of the domain owners 135A-L) may use the
service server 125 to change their authoritative name server to
the authoritative name server 142 and change their zone file
records to have their domain point to the proxy server 120.

The service server 125, operated by the service, provides a
set of tools and interfaces for the domain owners 135A-L and
is accessible over the Internet. For example, the service server
125, among other things, allows the domain owners 135A-L.
to register for the service. For example, the service server 125
may includes tools to assist the domain owners 135A-L in
changing their authoritative name servers and zone file
record(s). It should be understood, however, that the domain
owners 135A-L. may change their authoritative name server
and zone file record(s) without use of the service server 125
(i.e., they may directly change the authoritative name server
and zone file).

The DNS system 140 is used to refer to the DNS system as
a whole and includes multiple DNS servers to resolve DNS
requests. As illustrated, the DNS system 140 includes the
authoritative name server 142, which is an authoritative name
server for the service. Thus, the authoritative name server 142
is the authoritative name server for the domains correspond-
ing to the origin servers 130A-L. Accordingly, when the DNS
system 140 resolves a request for a domain corresponding to
one of the origin servers 130A-L, the authoritative name
server 142 provides the authoritative answer. It should be
understood that the DNS system 140 includes more DNS
servers (e.g., preferred domain servers, top-level domain
name servers, other domain servers) than illustrated. It should
also be understood that there may be multiple authoritative
web servers for the service and they may be geographically
distributed.

The client devices 110A-I are computing devices (e.g.,
laptops, workstations, smartphones, palm tops, mobile
phones, tablets, gaming systems, set-top boxes, etc.) that are
capable of accessing network resources. Each of the client
devices 110A-I include a client network application 115,
which is capable of accessing network resources. Users at the
client devices 110A-I request network resources (e.g., HTML
pages, images, word processing documents, PDF files, movie

US 9,342,620 B2

5

files, music files, or other computer files) through a client
network application such as a web browser or other applica-
tion (e.g., FTP client, SSH client, Telnet client, etc.).

The origin servers 130A-L. are computing devices that
serve network resources (e.g., HTML pages, images, word
processing documents, PDF files, movie files, music files, or
other computer files). The origin servers 130A-L respond to
requests for network resources (e.g., from an HTTP request,
FTP request, telnet request, etc.). Although not illustrated in
FIG. 1, it should be understood that the network resources of
the origin servers 130A-L. may be stored separately from the
device that responds to the requests.

The proxy server 120 is a computing device that is situated
between the client devices 110A-I and the origin servers
130A-L and provides many of the features of the page accel-
eration service. Certain network traffic passes through the
proxy server 120 (traffic sent from the client devices 110A-I
and/or traffic sent from the origin servers 130A-L.). Based on
at least in part on this traffic, the proxy server 120 provides at
least a portion of the improved loading of web resources
which will be described in greater detail later herein.

The client devices 110A-I request DNS resolution when a
domain name is used or requested by their client network
application and is not known (e.g., is not in alocal DNS cache
orthe DNSrecord in its local cache has expired). Consider the
following example, where a user of the client device 110A
enters the website example.com into a web browser of the
device (the origin server 130A serves the website example-
.com). If the client device 110A does not know the IP address
of example.com, (e.g., the cache on the client device 110A
does not have an entry for example.com or it has expired), the
client device makes a DNS request 150 to the DNS system
140 for the IP address for example.com. The domain owner of
example.com has changed its authoritative name server to the
authoritative name server 142, and the DNS zone file has been
changed so that the IP address returned by the authoritative
name server 142 will be that of the proxy server 120. As such,
the DNS system 140 performs a recursive or iterative DNS
process until the authoritative name server 142 returns the IP
address for the proxy server 120 in the DNS response 152.

Sometime after the DNS resolution is complete and the
client device 110A learns the IP address that points to
example.com (which is the IP address of the proxy server
120), the client device 110A makes the request 154 (e.g., an
HTTP GET request, an HTTP POST request, other HTTP
request method, or other request for an action to be performed
on an identified resource belonging to an origin server),
which is transmitted to the proxy server 120.

The proxy server 120 analyzes the request at operation 164
and may perform a set of one or more request related actions
based on the results of the analyzing. For example, if the
requested content is in the cache 122 and is not expired (e.g.,
its TTL value has not expired), the proxy server 120 may
return the requested content to the client device 110A in the
response 162 without querying an origin server. If however,
the requested content is not in the cache 122 or has expired,
the proxy server 120 transmits the request to the origin server
130A on behalf of the client device 110A at operation 156.
The proxy server 120 receives the response 158 (e.g., an
HTTP response) that may include the requested content (e.g.,
an HTML document), or an error code (e.g., 404 error, SXX
error, etc.).

After receiving the response 158, the proxy server 120
analyzes the response (at the analyzing response operation
166) and determines a set of one or more response related
actions to perform based on the results of the analyzing
response operation 166. For example, assuming that the

25

30

40

45

50

55

6

response includes the requested content (an HTML document
in this example), the proxy server 120 modifies the HTML
document to improve the loading performance of the web
page (the HTML document and its objects). In one embodi-
ment, the proxy server 120 inserts a reference to a loader
client-side script (e.g., Javascript) (hereinafter referred as
“loader”) in the <head> portion of the HTML returned from
the origin server. The loader can also alternatively be inserted
elsewhere into the HTML. The functionality of the loader will
bedescribed in greater detail later herein. In one embodiment,
the loader, when executed by the client network application,
begins a loop which waits for the page to be “onready” or be
finished loading. In one embodiment, if client network appli-
cation does not support the onready element (e.g., if the client
network application is old), the loader, when executed, starts
a timer that delays execution of the rest of the page for a
pre-defined amount of time.

The proxy server 120 also scans the rest of the HTML for
client-side script objects (e.g., by scanning for <script> tags).
The proxy server 120 modifies the script objects in such a way
to delay them from being executed by the client network
application. For example, the proxy server 120 changes the
type attribute of the script objects from its standard form (e.g.,
“text/javascript”) to a non-standard form (e.g., to “text/djs™)
in order to delay the script from being executed. In some
embodiments, the proxy server 120 also changes the “src”
attribute of the script object (if the script object has a “src”
attribute) and/or makes other modifications in order to pre-
vent the client network applications from loading/executing
that particular script. This causes the code within the <script>
tag to be ignored by the client network application so that
script does not block or delay page rendering. In some
embodiments, the proxy server 120 also scans the HTML
document for other objects that have a “src” attribute and
modifies them such that the request for the source of those
objects is deferred or loaded through the proxy server 120.

In an alternative embodiment, instead of the proxy server
120 modifying the objects to defer their loading, the loader,
when executed by the client network application, modifies the
objects to defer them from being executed in a similar way as
the proxy server. For example, the loader may intercept the
objects before they are loaded in order to modify them to
defer them from being executed.

In some embodiments, the loader, when executed by the
client network application, sends a request to the service
asking for the standard object package (a package is a set of
one or more objects) for the page that is being loaded (here-
inafter referred to a “standard package request™). In an alter-
native embodiment, the loader requests the standard object
package for the entire site. A standard object package is a
collection of one or more objects that are known and/or typi-
cally loaded on the page and/or site. The objects may include
a combination of one or more of the following: client-side
scripts, CSS, images, styles, classes, Flash elements, sound
files, or other objects. The objects in the standard package
may have the source domain as the origin server (i.e., located
on the same domain as the origin server) or have a different
source domain (i.e., located on a different domain than the
origin server).

Some client network applications support local storage
(sometimes referred to as DOM storage) that allows for per-
sistent data storage in addition to a standard client network
application cache. There is typically more storage capacity in
local storage than in client network application cache. Local
storage is domain specific and typically each domain has a
certain amount of storage space whereas client network appli-
cation cache is not domain specific and has a certain amount

US 9,342,620 B2

7

of storage space regardless of domain. The domain has con-
trol over what is stored in local storage whereas the client
network application has control over the browser cache.

In one embodiment, the loader only requests the standard
object package if it is being executed by a client network
application that does not support local storage. For example,
the loader checks whether a local storage variable is sup-
ported by the client network application to determine whether
it supports local storage. The package request as well as the
package are cacheable.

If the standard package of objects is not in local storage or
cache, the package request is relayed over the network to the
proxy server 120. The standard package request includes
information about the page/site that is currently being
requested. If the standard package requested is in local stor-
age or cache, then the package of objects is fetched from the
cache. In some embodiments of the invention, the standard
package request is made immediately. In other embodiments
of the invention, the standard package request is not made
until after the page signals the “onready” event or the loader
timer expires. In response to receiving a standard package
request, the proxy server 120 returns a multi-part response
that includes objects that are known to be loaded on the page
(and which it could locate).

The objects returned in a response to the standard package
request may be included in the page and are cached (if cach-
ing is supported). It should be understood that the objects in
the standard package of objects may differ than the object(s)
of the page being loaded by the client network application.
For example, object(s) may not be included in the standard
package of objects and/or the standard package of objects
may include object(s) that are not part of the page being
loaded by the client network application. As a result, addi-
tional objects may need to be requested (if not otherwise
locally available) and/or some objects may need to be
excluded by the client network application. The loader may
record those objects that need to be requested.

In addition to or in lieu of requesting the standard object
package, the loader, when executed by the client network
application, may request a dynamic object package for one or
more of the deferred objects that are not locally available to
the client network application (e.g., not in local storage, in
cache, or in local memory as being returned from a standard
package request). If a deferred object is locally available and
its time to live (TTL) has not expired, then the loader reads it
locally. If an object is not locally available or its TTL has
expired, then the loader includes a URL for that object on a
list for a dynamic object package. The deferred object(s) may
be hosted by different domains. Thus, a dynamic object pack-
age request may include URLs for multiple objects which
may be hosted by multiple domains. The dynamic object
package request is sent to the proxy server 120 in a single
request. Thus, the loader essentially groups multiple object
queries into a single request using a single TCP connection
thereby reducing the number of TCP connections otherwise
required to request and receive those objects. In one embodi-
ment, the loader collects the URLs for inclusion in the
dynamic object package request and causes the request to be
transmitted after the onready event is triggered or the loader’s
timer has expired. In an alternative embodiment of the inven-
tion, each request is made to the proxy server 120 one at a
time. In another embodiment of the invention or if an error in
the proxy service is detected, the requests are made individu-
ally and not through the proxy server 120 but directly to the
original domain.

Responsive to receiving a dynamic object package request
that includes a list of URLs corresponding to objects from the

10

15

20

25

30

35

40

45

50

55

60

65

8

client network application, the proxy server 120 determines
whether that package of objects has been requested before
and, if so, whether a cached copy of the objects for the
package exists in the cache 122 and its TTL has not expired.
If so, the proxy server 120 returns the cached copy. In one
embodiment, the cached copy of the package is returned on
the same single TCP connection used to make the dynamic
object package request.

If a cached copy does not exist, the proxy server 120 splits
the individual URLs from the list and checks for each corre-
sponding object in its cache 122. If the URL’s object is on the
proxy server’s cache 122, and the cached object has not
expired, then it is included in a file to be sent to the client and
is streamed on the same single TCP connection. If the object
of the URL is not in the proxy server’s cache 122, or the
cached object has expired, then the proxy server 120 requests
the object directly from the URL via the network. When the
proxy server 120 receives a response from an origin server
with an object, the object is included in the response, and the
object is cached with a TTL value. The proxy server 120
separates each object in the file such that the client network
application can locate each different object in the file and
potentially store each different object in local storage (if local
storage is supported by that client network application). In
one embodiment, the proxy server 120 forms a response that
has an overall header and a multipart divider defined in the
header that separates different objects in the response. In
another embodiment, the proxy server 120 forms a response
that includes a footer index that specifies each object in the
response and the number of bytes that offset that object from
other objects in the response. The response may either be
returned all at once (for example, if it already existed as a
whole in the cache) or may be returned as parts are received
(in other words, parts of the response may be returned as a
stream and, potentially, asynchronously as various objects are
fetched URL requests). FIG. 12 illustrates an exemplary for-
mat of a dynamic object package response according to one
embodiment.

Ifthe proxy server 120 receives an error message from the
origin server (e.g., 404 error, SXX error, etc.) or otherwise
was not able to retrieve a requested object, the proxy server
120 includes an error object in the dynamic object package
response. By sending an error object, the proxy server 120
obscures the error from the client network application and
keeps the client network application from waiting for the
response to that object (which could cause the client network
application to hang and prevent other portions of the page
from loading). In addition, the receipt of an error object in a
dynamic object package response allows the client network
application to begin the process of skipping the object, dis-
playing an error message, or establishing a separate connec-
tion in an attempt to request the object directly from the
corresponding origin server (bypassing the proxy server).

The loader listens for the response for its request for
object(s). If the entire list of objects is returned, the client
network application locates each different object as specified.
For example, in one embodiment the loader uses the multipart
divider to separate the various objects by jumping to offsets as
specified. As another example, in one embodiment, the loader
uses the footer to separate the various objects by jumping to
offsets as specified. If the response is returned as a stream or
in parts, the client network application can separate the vari-
ous objects based on the multi-part separator. If a requested
object is not in the response, the loader requests the object
directly from the URL (bypassing the proxy server 120).

For each object that is returned, the loader associates the
object with the one or more tags on the page that reference the

US 9,342,620 B2

9

object. In one embodiment, the objects are loaded in order
that they were requested. In an alternate embodiment, the
objects are loaded in an order specified by an attribute field
associated with each object as it was originally included on
the page. In one embodiment, the loader causes the objects to
be loaded responsive to detecting that the page’s onready
element (or equivalent) has occurred or otherwise the rest of
the HTML page has finished loading.

If the proxy server 120 is unable to retrieve an object from
its origin server, it may return an error object to the client
network application. The error object may be included in the
list of files being streamed to the client network application
and may be represented in the response. Responsive to receiv-
ing an error object, the loader may cause a request for that
object to be sent to the origin server directly (bypassing the
proxy server 120).

In one embodiment of the invention, the loader (or another
script inserted on the page) may include a call after the page
has loaded that sends a manifest of all the objects on the page
(Javascript, CSS, Images, styles, classes, Flash elements,
sound files, or other objects) and their respective attributes
(e.g., size, type, presence in cache, etc.) to the proxy server
120 to be logged. The proxy server 120 stores these logs
and/or the logs generated by the loader requesting objects to
be preloaded in the log storage 126. The proxy server 120, or
an associated server, analyzes these logs in order to create the
standard package file. For each object on a page within a
website that passes through the proxy server 120, the proxy
server 120 creates an index based on a combination of the
percentage of pages the object is available on and/or its size.
If the index exceeds a specified value, then the proxy server
120 includes the object in the standard package file.

By way of example, an index may be made up of the
algorithm of the size of a file divided by the percentage of
pages within a website on which it is present. In this case, the
lower the number (i.e., the smaller the file or the more likely
it is to be requested) the more likely it would be that the file
would be included. The index may be adjusted by different
weights depending on the priorities (e.g., the size of the file
may be assigned a higher priority than its frequency of being
accessed if the goal is to minimize bandwidth). In one
embodiment, the proxy server 120 generates a table of con-
tents for each standard package file, separates multiple
objects in the file by a separator, and includes a footer index
with the byte offsets between each object in the file. In another
embodiment, the proxy server 120 generates a response that
has an overall header that defines a multipart divider and each
multi-part segment has its own header and indicates the byte
offsets between each object in the file. This file is then cached
on the proxy server 120 in the cache 122 and marked with a
TTL. In one embodiment of the invention, the file is distrib-
uted to multiple proxy servers running in one or more data
centers.

While FIG. 1 illustrates a single proxy server 120, in some
embodiments the service has multiple proxy servers that are
geographically distributed. For example, in some embodi-
ments, the service uses multiple point of presences (POPs). A
POP is a collection of networking equipment (e.g., authori-
tative name servers and proxy servers) that are geographically
distributed to decrease the distance between requesting client
devices and content. The authoritative name servers have the
same anycast [P address and the proxy servers have the same
anycast [P address. As a result, when a DNS request is made,
the network transmits the DNS request to the closest authori-
tative name server. That authoritative name server then
responds with a proxy server within that POP. Accordingly, a
visitor will be bound to that proxy server until the next DNS

10

15

20

25

30

35

40

45

50

55

60

65

10

resolution for the requested domain (according to the TTL
(time to live) value as provided by the authoritative name
server). In some embodiments, instead of using an anycast
mechanism, embodiments use a geographical load balancer
to route traffic to the nearest POP. While FIG. 1 illustrates
multiple origin servers 130A-L coupled with the proxy server
120, in some embodiments the proxy server is coupled with a
single origin server. Moreover, in some embodiments, there
are multiple proxy servers providing service for a particular
domain. The owner of the proxy server 120 is typically dif-
ferent than the owners of the origin servers 130A-L. In addi-
tion, the proxy server 120 is not typically part of the local
network of the origin web servers 130A-L. For example, the
proxy server 120 is outside of the local area network of the
origin web servers 130A-L. and is typically not physically
accessible by owners/administrators of the origin servers
130A-L.

FIGS. 2A-B are data flow diagrams illustrating exemplary
operations of the page acceleration service according to one
embodiment. The client network application 115 establishes
a TCP connection 205 with the proxy server 120 using known
techniques. The client network application 115 then sends a
request for an HTML document to the proxy server 120. The
request for the HTML document may be received by the
proxy server 120 due to the domain hosting the HTML docu-
ment resolving to the proxy server 120. As another example,
the client network application 115 may be configured to
directly send the request to the proxy server 120 regardless
whether the domain hosting the HTML document resolves to
the proxy server 120.

Assuming that the proxy server 120 does not have the
HTML document in its cache, the proxy server 120 forwards
the request 212 to the appropriate origin server 130A for the
HTML document. Although not illustrated in order not to
obscure understanding of the invention, the proxy server 120
establishes a TCP connection with the origin server 130A.
The proxy server 120 then receives a response 214 with the
requested HTML document. The proxy server 120 may then
store the HTML document in its cache.

The proxy server 120 then modifies the HTML document
for page acceleration at operation 216. For example, as
described above the proxy server 120 inserts the loader 222
(or a reference to the loader) in the HTML document, and
modifies object(s) 224 (e.g., one or more client-side scripts,
images, CSS, classes, styles, audio files, video files, or other
object) in the HTML document that have an external source
(e.g., a “src” attribute) such that the loading of those objects is
deferred. The loader 222 and the modified object(s) 224 may
be interspersed with non-object HTML code. The proxy
server 120 transmits the response 218 that includes the modi-
fied HTML document to the client network application 115.
The request 210 and the response 218 are transmitted using
the TCP connection 205. After receiving the response 218, the
TCP connection 205 may be torn down or alternatively may
be kept alive. In one embodiment, the proxy server 120 stores
the modified HTML document in its cache so that it may
respond to future requests for the same HTML document
without performing the same modifications and without que-
rying the origin server for the HTML document.

The client network application 155 loads the HTML docu-
ment received in the response 218 and defers loading the
modified object(s) 224 at operation 230. As part of loading
and executing the loader 222, the TCP connection 231 is
established between the client network application 115 and
the proxy server 120. The TCP connection 231 is established
so that the deferred objects with an external source can be
requested through the proxy server 120.

US 9,342,620 B2

11

The loader 222 causes the client network application 115 to
request 232 an object package. For illustrative purposes the
requested object package may be a standard object package or
a dynamic object package. It should be understood that a
dynamic object package request may be requested after a
standard object package request if the standard object pack-
age does not include all of the deferred objects on the page.
For purposes of explanation, the objects that are part of the
package are the objects O1, O2, and O3. The request 232 is
made using the TCP connection 231.

The proxy server 120 determines whether the requested
package of objects is in cache and is not expired. If it is, then
the proxy server 120 formats and transmits the package
response 235 to the client network application 115. The file
sent in the response is formatted such that the client network
application can locate and access each object in the file and
potentially store each different object in local storage (if local
storage is supported by that client network application). As
illustrated in FIG. 2A, the package response includes an
object list 236 (e.g., in an header) that lists what objects are
included in the response and identifies where in the response
the objects are located. The object 01 237, object 02 238, and
object 03 239 is included in the response. The response 235 is
made using the TCP connection 231.

If the requested package of objects is not in cache (or the
cache as expired for those objects), then the proxy server 120
separates the URLs that correspond to the objects at operation
240. For each of these objects, the proxy server 120 deter-
mines whether that object is in its cache and is not expired. If
s0, the cached copy is used. If it is not in cache or the cache has
expired, then the proxy server 120 requests the object from its
origin server over the network. For purposes of explanation,
the object O1 is available in cache and the objects O1 and O2
are not. At operation 242, the proxy server 120 accesses the
object O1 from its cache. The proxy server 120 formats and
begins transmitting the response 244 to the client network
application 115. The response is streamed using the existing
TCP connection 231 (streaming meaning the objects are
transmitted to the client network application 115 as or shortly
after the proxy server 120 accesses them). The response 244
includes the list of objects 236 and the object O1 237.

Since the object O2 is not available in its cache, the proxy
server 120 transmits the request 246 to the origin server 130A
for the object O2 (the origin server 130A hosts the object O2).
The proxy server 120 also transmits the request 248 to the
origin server 130B for the object O3 (the origin server 130B
hosts the object O3).

The origin server 130B transmits the response 250 that
includes the object O3 before the origin server 130A trans-
mits a response for the object O2. Thus, in this example, the
proxy server 120 receives the object O3 before the object O2.
The proxy server 120 caches the object O3 in its cache at
operation 252. The proxy server 120 also streams 254 the
object O3 to the client network application 115 in the
response. As illustrated in FIG. 2B, the object O3 239 has
been added to the response. It should be understood that the
list 236 and the object O1 237 are not retransmitted to the
client network application 115. In other words, the proxy
server 120 does not transmit a completely new response to the
client network application 115 that includes the already trans-
mitted portions of the response (assuming that those portions
have been received and acknowledged by the client network
application 115). The streaming of the object O3 uses the
existing TCP connection 231.

Sometime later, the proxy server 120 receives the response
256 from the origin server 130A with the object O2. The
proxy server 120 caches the object O2 inits cache at operation

10

40

45

12

258. The proxy server 120 also streams 260 the object O2 to
the client network application 115 in the response. As illus-
trated in FIG. 2B, the object O2 238 has been added to the
response. The streaming of the object O2 uses the existing
TCP connection 231. The TCP connection 231 is then torn
down.

Thus, as illustrated in FIGS. 2A-B, multiple object queries
are packaged into a single request (e.g., the request 232) using
a single TCP connection (e.g., the TCP connection 231) and
the objects are included in a single response (e.g., the
response 244), which may be transmitted asynchronously and
dynamically (as the objects are retrieved by the proxy server)
and use the same TCP connection. This reduces the number of
TCP connections otherwise required to request and receive
those objects which reduces the time required to load the
page. In addition, it should be understood that although FIGS.
2A-B illustrate only a single client network application, the
proxy server 120 receives and processes requests for many
client network applications. As such, the cache of the proxy
server 120 becomes accurate and current and many of the
objects requested can be directly accessed through its cache
without querying the origin servers, which reduces the time
required to load the page. In addition, typically the proxy
server 120 is located closer to the client devices meaning that
a request to the proxy server 120 can typically be answered
faster than a request to an origin server (e.g., the proxy server
120 is located on the edge of the network).

FIG. 3 is a flow diagram illustrating exemplary operations
for modifying an HTML document for improved loading
performance according to one embodiment. The operations
of' this and other flow diagrams will be described with refer-
ence to the exemplary embodiments of the other diagrams.
However, it should be understood that the operations of the
flow diagrams can be performed by embodiments of the
invention other than those discussed with reference to these
other diagrams, and the embodiments of the invention dis-
cussed with reference these other diagrams can perform
operations different than those discussed with reference to the
flow diagrams. In particular, the operations described with
reference to the flow diagrams are described as being per-
formed by components illustrated in FIG. 1 (e.g., the client
network application 115, the proxy server 120, origin servers
130, etc.).

At operation 310, the proxy server 120 receives an HTML
document from the origin server 130A. For example, the
client networking application 115 of the client device 110A
makes a request for an HTML document at a domain that
corresponds to the origin servers 130A. The request is
directed to the proxy server 120 and the proxy server 120
relays the request to the origin server 130A. In another
embodiment, the proxy server 120 retrieves the HTML docu-
ment from its cache. The HTML document is read into a
buffer (or at least a portion of the HTML document that fits
within the buffer).

Flow then moves to operation 315 and the proxy server 120
determines whether page acceleration is on. In one embodi-
ment, customers of the service can configure whether they
want the page acceleration process turned on for their domain
or individual pages. If it is not turned on, then flow moves to
operation 325 where the proxy server 120 returns the HTML
unmodified. If page acceleration is turned on, then flow
moves to operation 320 and the proxy server 120 inserts the
loader into the HTML received from the origin server 130.
For example, the proxy server 120 inserts the loader into the
<head> portion of the HTML. Details regarding the operation
of the loader will be described in greater detail later herein.
Flow then moves to operation 330.

US 9,342,620 B2

13

In one embodiment, in addition to inserting the loader, the
proxy server 120 modifies the client-side script objects
included in the HTML document in such a way to delay them
from being executed by the client network application 115.
The proxy server 120 may also modify other objects that have
a “src” attribute such that the request for those objects is
deferred. At operation 330, the proxy server 120 reads the
portion of the HTML document in the buffer and at operation
335 the proxy server 120 determines whether the bufter con-
tains a <script> tag or otherwise includes a client-side script.
If it does not contain a <script> tag, then flow moves to
operation 340 and the proxy server 120 flushes the portion of
the HTML document in the buffer to the client network appli-
cation 115. Flow then moves to operation 345 where if the
proxy server 120 determines that it is at the end of the HTML,,
flow moves to operation 375 and the operations finish (the
entire HTML document has been sent to the client network
application 115). If it is not the end of the HTML document,
then flow moves back to operation 330 where a next portion of
the HTML document is read into the buffer.

If'the buffer contains a <script>tag or otherwise includes a
client-side script, then flow moves to operation 350 and the
proxy server 120 inspects the first script tag in the buffer. Flow
then moves to operation 355 where if the proxy server 120
determines that the script tag includes an attribute that indi-
cates that the script should be loaded normally (e.g., the script
tag includes a no-replace-override attribute), then flow moves
to operation 370, otherwise flow moves to operation 360. In
one embodiment, customers of the service may indicate
whether scripts should be loaded normally. In one embodi-
ment, customers of the service indicate which scripts should
be loaded normally (the loading of the other scripts will be
deferred), while in another embodiment customers indicate
which scripts should be deferred (the other scripts will be
loaded normally).

Atoperation 370, the proxy server 120 determines whether
there are additional script tags in the buffer. If there are not,
then flow moves to operation 375 and the proxy server 120
flushes the portion of the HTML document in the buffer to the
client network application 115. If there is an additional script
tag, then flow moves to operation 365 and the proxy server
120 inspects the next script tag and flow moves to operation
355. If the script tag does not indicate that the script should be
loaded normally (e.g., the script tag does not include a no-
replace-override attribute), then flow moves to operation 360
and the proxy server 120 rewrites the type attribute of the
script to a non-standard form to cause the loading of that
script to be deferred. Flow moves from operation 360 to
operation 370.

In one embodiment, the proxy server 120 caches the modi-
fied HTML document (e.g., in the cache 122) with a TTL
value so that future requests for the same HTML document
may be retrieved and returned from the cache of the proxy
server 120.

The client network application 115 receives the modified
HTML document from the proxy server 120. The client net-
work application 115 begins loading the page as the portion of
the HTML document is received. In one embodiment, the
loader causes object(s) referenced in the HTML document to
be deferred from loading until the other parts of the HTML
are loaded; while in other embodiments, the loader begins the
process of requesting the object(s) referenced in the HTML
document in the order in which they appear on the page. As
described above, in some embodiments, the loader causes a
package request to be sent to the proxy server 120. The loader
typically requests the standard object package from the proxy

10

15

20

25

30

35

40

45

50

55

60

65

14

server 120 when the client network application 115 does not
support local storage, but may also request the package even
if local storage is supported.

FIG. 4 is a flow diagram illustrating exemplary operations
for a client network application requesting a standard pack-
age of objects (e.g., client-side scripts) for a site or page
according to one embodiment. In one embodiment, the opera-
tions described with reference to FIG. 4 are performed by a
client network application that does not support local storage.
For purposes of an example the operations described with
reference to F1G. 4 are described with reference to client-side
scripts, but it should be understood that similar operations are
applicable to other types of objects (e.g., CSS, Images, styles,
classes, Flash elements, sound files, or other objects). In one
embodiment, the operations described with reference to FIG.
4 are performed responsive to the page being “onready” or
otherwise finished loading, while in other embodiments the
operations are performed without regard to the page being
“onready” or otherwise finished loading.

At operation 410, the loader attempts to load the standard
client-side script package for the HTML page. Flow moves to
operation 415 where if the package is in the cache of the client
network application, then flow moves to operation 430 and
the package is read from the cache and flow moves to opera-
tion 435, otherwise flow moves to operation 420. In an alter-
native embodiment where the client network application 115
supports local storage, the loader also checks whether the
package is in the local storage and if so reads it from the local
storage.

At operation 420, the loader causes a request to be sent to
the proxy server 120 for the standard client-side script pack-
age for the page. Details regarding processing the package
request will be described in greater detail with respect to FI1G.
5. Flow moves from operation 420 to operation 425 where the
client network application determines whether the proxy
server 120 returned an error instead of returning anything
(otherwise the server returned the requested package). If the
server returned an error, then flow moves to operation 445,
otherwise flow moves to operation 435.

At operation 435, the loader loads a manifest of objects
from the client-side script package. Flow then moves to
operation 445. At operation 445, the loader determines
whether the page is finished rendering. After the page is
finished rendering, flow moves to operation 450 and the
loader reads the deferred script objects on the page (e.g., those
scripts that were modified as being deferred by the proxy
server 120). Flow then moves to operation 455 where the
loader reads a first script object and determines whether that
script object is memory and returned in the client-side script
package. If it is, then flow moves to operation 465, otherwise
flow moves to operation 460 and the loader cause the client
network application to request and receive the script object
directly from the origin server (e.g., bypassing the proxy
server 120), and flow moves to operation 470. At operation
465, the loader reads the script object from the client-side
script package and flow moves to operation 470. At operation
470, the loader causes the script object to be inserted into the
page and flow moves to operation 475. If there are more
deferred script objects on the page, then flow moves to opera-
tion 480 and the next deferred script object is read and flow
moves back to operation 455. If there are no more deferred
script objects on the page, then the operations complete.

FIG. 5 is a flow diagram illustrating exemplary operations
for a proxy server responding to a request from a client
network application for a standard client-side script package
according to one embodiment. Although the operations
described in FIG. 5 are specific to client-side scripts, similar

US 9,342,620 B2

15

operations are performed when responding to a package
request for other types of objects. At operation 510, the proxy
server 120 receives a request from a client network applica-
tion 115 for a client-side script package for a particular page
(or site). Flow then moves to operation 515 where the proxy
server 120 determines whether the package is in its cache 122.
If it is, then flow moves to operation 520 and if the cached
package has not expired, then flow moves to operation 585
and the package is returned to the client network application
115. Ifthe package is not in the cache or has expired, then flow
moves to operation 525 and the proxy server 120 splits the
individual URLs from the package and flow moves to opera-
tion 530.

At operation 530, the proxy server 120 reads the first URL
from the package (or otherwise reads one of the URLs from
the package) and flow moves to operation 535. If the resource
corresponding to the URL is in the cache 122, then flow
moves to operation 540 where the proxy server determines
whether the cached resource has expired. If the cached
resource has expired, then flow moves to operation 555, oth-
erwise flow moves to operation 545. If the resource corre-
sponding to the URL is not in cache (or the cache is expired),
flow moves to operation 555 and the proxy server 120
requests the resource corresponding to the URL via the Inter-
net (e.g., the request is sent to the origin server of the
resource). Flow moves from operation 555 to operation 560.

At operation 545, the proxy server 120 appends a multi-
part divider to the page to separate the objects and flow moves
to operation 550 where the object is returned to the client
network application 115 using the existing connection. Flow
then moves to operation 565. It should be understood that the
object is returned to the client network application 115 using
the existing connection. It should be understood that there
may be multiple objects of the package returned using the
existing connection, and the objects may be returned as the
proxy server 120 locates them.

At operation 560, the proxy server 120 listens for a
response from the origin server corresponding to the request
in operation 555 and typically receives a response from that
origin server, however it should be understood that the origin
server may be down or the request may timeout. The response
from the origin server may include the requested resource or
may be an error message (e.g., 404 error, server error, etc.).
Flow moves from operation 560 to operation 545.

Atoperation 565, the proxy server 120 determines whether
there are more URLs in the client-side script package. If there
is, then flow moves to operation 575 where the next URL is
read and flow then moves back to operation 535. If there are
no more URLs that are part of the package, then flow moves
to operation 570 and the proxy server 120 creates the client-
side script package and caches it in the cache 122. The client-
side script package is in a format such that the client network
application 115 can locate each different object in the file and
potentially store that object in local storage (if local storage is
supported by the client network application) at operation 580.
In one embodiment, the proxy server 120 forms a response
that has an overall header and a multipart divider defined in
the header that separates different objects in the response. In
another embodiment, the proxy server 120 forms a response
that includes a footer index that specifies each object in the
response and the number of bytes that offset that object from
other objects in the response. The response may either be
returned all at once (for example, if it already existed as a
whole in the cache) or may be returned as parts are received
(in other words, parts of the response may be returned as a
stream and, potentially, asynchronously as various objects are
fetched URL requests).

10

15

20

25

30

35

40

45

50

55

60

65

16

FIG. 6 is a flow diagram illustrating exemplary operations
for determining which objects are to be included in a standard
object package according to one embodiment. At operation
610, the proxy server 120 retrieves the logs for all scripts
loaded on pages of a particular site from the log storage 126.
In one embodiment, the information in the logs may be gen-
erated as a result of the loader including a call that sends a
manifest of all the objects on the page (Javascript, CSS,
Images, styles, classes, Flash elements, sound files, or other
objects) and their respective attributes (e.g., size, type, pres-
ence in cache, etc.) to the proxy server 120 to be logged.

For example, FIG. 7 is a flow diagram illustrating exem-
plary operations for sending a manifest of objects and their
respective attributes to the proxy server according to one
embodiment. At operation 710, the client network application
115 finishes loading a web page. Flow then moves to opera-
tion 720 and the loader reads all the images, CSS classes, flash
files, sound files, scripts, and other objects in the DOM
(Document Object Model) and their respective attributes
(e.g., size, type, name, presence in cache, URL, etc.). Flow
then moves to operation 730 and the loader causes the client
network application 115 to send a manifest of the objects and
page information to the proxy server 120.

With reference back to FIG. 6, flow moves from operation
610 to 620. At operation 620, the proxy server 120 creates an
index for each object based on the frequency ofload and/or its
size. Flow then moves to operation 625 and the proxy server
120 retrieves the first object included in the logs. Flow then
moves to operation 630 and the proxy server determines
whether the index value is above a predetermined threshold.
It it is above a predetermined threshold, then flow moves to
operation 635 where the object is added to the standard object
package for the site. If it is below the threshold, then flow
moves to operation 640 where the proxy server 120 deter-
mines whether there are more objects included in the logs. If
there is, then flow moves to operation 645 where the next
object is retrieved and flow moves back to operation 630. If
there are no more objects, then flow moves to operation 650
and the proxy server 120 creates a manifest for the bundle of
objects (the standard object package). Flow then moves to
operation 655 and the proxy server 120 creates a manifest of
objects separated by a divider string. Flow then moves to
operation 660 and the standard object package is saved. The
standard object package may also be distributed to multiple
proxy servers running in one or more data centers.

In addition to or in lieu of requesting the standard object
package, in one embodiment the loader determines each
object that has been deferred from loading and makes a
request to the proxy server for those objects (typically using
a single request). FIG. 8A is a flow diagram illustrating exem-
plary operations for requesting object(s) that have been
deferred according to one embodiment. In one embodiment,
the operations performed in FIGS. 8A are performed by a
client network application that supports local storage.
Although the operations described in FIG. 8A-B are
described with reference to client-side scripts, similar opera-
tions are performed when requesting different object types
(e.g., CSS, images, styles, classes, Flash elements, sound
files, or other objects).

At operation 810, the client network application 115 loads
the HTML of the webpage into its DOM. Flow then moves to
operation 815 and the loader reads the “src” of each URLs of
each script on the page and flow moves to operation 820. At
operation 820, the loader examines the first script URL on the
page (or alternatively one of the script URLs on the page).
Flow then moves to operation 825 and the loader determines
whether the URL for that script is in local storage. If it is, then

US 9,342,620 B2

17

flow moves to operation 835, otherwise flow moves to opera-
tion 830 and the loader adds the URL to the request queue and
flow moves to operation 835.

At operation 835, the loader determines whether there is
another script on the page. If there is, then flow moves to
operation 840 and the loader examines the next script URL
(or alternatively a different one of the script URLs on the
page) and flow moves back to operation 825. If there are no
more scripts on the page, then flow moves to operation 845
and loader transmits the list of requested objects (identified
through their respective URLs) to the proxy server 120 (as-
suming that there is at least one URL that is part of the request
queue). In one embodiment, the list of requested URLs are
transmitted in a single request to the proxy server 120 over a
single TCP connection (referred to as a dynamic object pack-
age request). Thus, multiple client-side script queries can be
grouped into a single TCP request thereby reducing the num-
ber of TCP connections required to request the client-side
script objects and reducing the time required to request (and
therefore receive) the client-side script objects. FIG. 9, which
will be described in greater detail later herein, describes
operations performed on the proxy server 120 for processing
a dynamic object package request from a client network
application that includes a list of URLs.

FIG. 8B is a flow diagram illustrating exemplary opera-
tions performed responsive to receiving a dynamic object
package reply according to one embodiment. The operations
begin at operation 850 (from the operation 845) where the
client network application 115 receives the scripts in one
response from the proxy server 120 over the existing TCP
connection. The script objects may be streamed back through
the connection as they are located by the proxy server 120 and
may not necessarily be in the order in which they were listed
in the list of requested URLs in the dynamic object package
request. As will be described in greater detail with respect to
FIG. 9, the response includes a single file that separates each
object in the file such that the client network application can
locate each different object and potentially store that object in
local storage (if supported). The file in the response includes
an object for each of the requested client-side script objects;
however some of the object(s) may be error objects. An error
object indicates that the proxy server 120 was unable to
retrieve the requested object (e.g., due to a 404 error, server
error, or other error). Sending a specific error object to the
client network application allows it to begin the process of
skipping the object, displaying an error message, or establish-
ing a connection in an attempt to request the object directly
from the corresponding origin server (bypassing the proxy
server).

Flow then moves to operation 855 where the loader sepa-
rates the scripts into distinct pieces using the information in
the file. For example, the header of the response may indicate
the positions of the script objects in the file. Next, flow moves
to operation 860 and the loader attempts to store the separated
script objects in local storage. The use of local storage allows
the loader to cache parts of the response (e.g., each individual
script object returned in the response); whereas client net-
work application cache is only able to cache the response as a
whole. Flow then moves to operation 865 and if the local
storage is full (or otherwise cannot support storing the list of
scripts), then flow moves to operation 875, otherwise flow
moves to operation 870 where the separated script objects are
stored in local storage. Flow moves from operation 870 to
operation 890 where the client network application 115 waits
for execution of the scripts, which will be described in greater
detail with reference to FI1G. 10.

25

30

40

45

50

18

At operation 875 (local storage is full), the client network
application 115 performs cache eviction (if possible) in an
attempt to free space in the local storage. For example, the
objects whose TTL has expired are removed. As another
example, the objects that have a relatively shorter TTL value
until expiration are removed. The cache eviction can also be
based on the time in the local storage, the size of the objects
in local storage, when the object was requested or used on the
page, etc. Flow moves to operation 880 where if the local
storage is still full (or cannot support storing the list of
scripts), flow moves to operation 885 and the list of scripts (or
at least the portion of scripts that cannot be stored in the local
storage) is held in memory until it is executed. Flow moves
from operation 885 to operation 890. Ifthe local storage is not
full, then flow moves to operation 870.

FIG. 9 is a flow diagram illustrating exemplary operations
performed on the proxy server 120 when processing a request
from a client network application for a dynamic object pack-
age according to one embodiment. Although the operations
described in FIG. 9 are specific to client-side scripts, similar
operations are performed when responding to a request for
other types of objects.

At operation 910, the proxy server 120 receives a dynamic
object package request from a client network application 115
that include alist of objects identified through their respective
URLs. The list may be for resources located on different
domains (including those which do not point to the proxy
server 120). Flow then moves to operation 915 where the
proxy server 120 determines whether the resource(s) corre-
sponding to the list of URL(s) is in the cache 122. If they are,
then flow moves to operation 920 and if the cache has not
expired, then flow moves to operation 985 and the cached
copy of those resource(s) are returned to the client network
application 115. If the resource(s) corresponding to the list
are not in the cache or the cache has expired, flow moves to
operation 925 and the proxy server 120 splits the individual
URLSs from the list and flow moves to operation 930.

At operation 930, the proxy server 120 reads the first URL
from the list (or otherwise reads one of the URLs of the list)
and flow moves to operation 935. If the resource correspond-
ing to the URL is in the cache 122, then flow moves to
operation 940 where the proxy server determines whether the
cached resource has expired. If the cached resource has
expired, then flow moves to operation 955, otherwise flow
moves to operation 545. If the resource corresponding to the
URL is not in cache (or the cache is expired), flow moves to
operation 955 and the proxy server 120 requests the resource
corresponding to the URL via the Internet (e.g., the request is
sent to the origin server of the resource). Flow moves from
operation 955 to operation 960.

At operation 945, the proxy server 120 appends a multi-
partdivider to the page to separate the objects and flow moves
to operation 950 where the object is returned to the client
network application 115. Flow then moves to operation 965.
It should be understood that the object is returned to the client
network application 115 using the existing connection. At
operation 960, the proxy server 120 listens for a response
from the origin server corresponding to the request in opera-
tion 955 and typically receives a response from that origin
server, however it should be understood that the origin server
may be down or the request may timeout. The response from
the origin server may include the requested resource or may
be an error message (e.g., 404 error, server error, etc.). Flow
moves from operation 960 to operation 945.

At operation 965, the proxy server 120 determines whether
there are more URLSs in the list of URLs. If there is, then flow
moves to operation 975 where a next URL is read and flow

US 9,342,620 B2

19

then moves back to operation 935. If there are no more URLs
that are part of the list, then flow moves to operation 970 and
the proxy server 120 creates the list of resources and caches it
in the cache 122. The proxy server 120 formats the response
such that the client network application 115 can locate each
different object in the file and potentially store that object in
local storage (if local storage is supported by the client net-
work application) at operation 980. FIG. 12 illustrates an
exemplary response according to one embodiment. In one
embodiment, the proxy server 120 forms a response that has
an overall header and a multipart divider defined in the header
that separates different objects in the response. In another
embodiment, the proxy server 120 forms a response that
includes a footer index that specifies each object in the
response and the number of bytes that offset that object from
other objects in the response. The response may either be
returned all at once (for example, if it already existed as a
whole in the cache) or may be returned as parts are received
(in other words, parts of the response may be returned as a
stream and, potentially, asynchronously as various objects are
fetched URL requests).

FIG.10is a flow diagram illustrating exemplary operations
performed by a client network application for loading scripts
after the page has loaded according to one embodiment. At
operation 1010, if the client network application supports the
onready element, then flow moves to operation 1015, other-
wise flow moves to operation 1070 where alternative actions
are taken. For example, the loader causes the client network
application 115 to begin a timer that delays execution of the
rest of the page for a pre-defined amount of time. As another
example, the loader checks the onReadyStateChange element
and the window.onload element to determine if the page is
finished loading.

At operation 1015, the loader waits until the page has
finished loading the HTML (is in the onready state). After the
page has finished loading, then flow moves to operation 1020
and the loader scans the HTML document and loads the list of
elements that have been changed to a non-standard form to
indicate that loading has been deferred (e.g., text/djs). Flow
the moves to operation 1025 and the client network applica-
tion reads the first item on the list and replaces the non-
standard form type with the standard form type (e.g., replace
text/djs with text/javascript) at operation 1030. Flow moves
from operation 1030 to operation 1035.

At operation 1035, the client network application 115
determines whether the element has a source field. If it does,
then flow moves to operation 1050 where it is determined
whether the source has been preloaded (e.g., is in local
memory and ready for execution). If the source has not been
preloaded, then flow moves to operation 1060 and the object
is attempted to be read from its origin server (which may or
may not involve the proxy server 120) and flow moves to
operation 1055. If the source is preloaded, flow moves to
operation 1055. At operation 1055, the client network appli-
cation 115 appends the source to the object and flow moves to
operation 1040. In one embodiment, the client network appli-
cation 115 performs an “eval” command that executes the
script object and outputs it in its original location in the page.

At operation 1040, the client network application 115
determines whether there are additional items on the list of
elements. If there is, then flow moves to operation 1045 and a
next item is read from the list and flow moves back to opera-
tion 1030, otherwise the operations complete.

FIG. 11 illustrates exemplary operations performed by a
client network application processing responses from the
proxy server including multiple resources corresponding to
multiple URLs according to one embodiment. At operation

40

45

50

20

1110, the client network application 115 loads HTML con-
tent. Next, the loader creates a list of objects on the page at
operation 1115 and requests the objects corresponding to the
object URLs. In one embodiment, a single request includes
all of the list of object URLs, while in other embodiments
there are multiple requests transmitted to the proxy server for
the list of objects. Flow then moves to operation 1125.

At operation 1125, the client network application receives
the response from the proxy server 120. Flow then moves to
operation 1130 where it is determined whether the response is
complete. Ifit is not complete, flow moves to operation 1140.
If the response is complete, then flow moves to operation
1135. As previously described, the response from the proxy
server 120 may include multiple objects that are separated in
a way that the client network application can retrieve each
individual object from the response. The following operations
use as an example a response including a table of contents and
amulti-part divider to separate the objects. However, it should
be understood that the type of separating the file into indi-
vidual objects is exemplary and may be different in different
embodiments. At operation 1135, the client network applica-
tion 115 reads the table of contents from the end of the file and
flow moves to operation 1160. At operation 1160, the file is
divided based on byte dividers as indicated in the table of
contents. Flow then moves to operation 1165 and for each
new section, the client network application 115 creates a new
object. Flow then moves to operation 1155.

Atoperation 1140, the client network application 115 reads
the file until it reaches a divider as indicated in the table of
contents. Flow then moves to operation 1145 and the client
network application 115 creates an object from the previous
divider to the next divider. Thus, the dividers separate the
objects in the response. Flow then moves to operation 1150
and if the client network application 115 has finished reading
the objects in the response, then flow moves to operation
1155. At operation 1155, the client network application 115
adds the new objects to its DOM The objects will then
execute. Alternatively, the client network application 115 per-
forms an “eval” on the objects, or otherwise prepares the
objects for execution.

FIG. 12 illustrates an exemplary package response accord-
ing to one embodiment. The package response includes a
header 1220 that defines a multipart divider that separates the
different objects 1270 in the response. The divider is created
randomly by the proxy server when creating the package file.
The response includes a package manifest 1250 (table of
contents) that includes a header that indicates the total num-
ber of bytes for the object 1225, the total number of bytes in
the object without the header 1230, an identifier 1235 that
indicates the object is the manifest (table of contents), the
response code for the object 1240, and the type of object
1245. The package manifest object 1250 also includes a listof
objects to follow in the package 1252. It should be noted that
each object in the list 1252 has been assigned a unique object
identifier (0-4 in this case). The objects 1270 below each
include a header and are separated by the multipart divider
1220. The header of each indicates the identifier of the object.
For example, the header of the object 1254 includes an iden-
tifier 1255 of O that indicates it is an object for http://www.ex-
ample.com/smalll.js. Each object header also includesa TTL
value. For example, the header of the object 1254 includes the
TTL value 1260 (7200). Each object header also includes a
server response code. For example, the header of the object
1264 includes a status code 1265 that indicates that the object
could not be found.

In one embodiment, the objects 1270 are streamed back to
the requesting client network application as they are

US 9,342,620 B2

21

retrieved. It should also be noted that the order of the objects
1270 is not necessarily the same as the order requested (as-
sumed to be in order in the list 1252). For example, the object
with an identifier of 4 is streamed to the client network appli-
cation before the object with an identifier of 1.

While embodiments have been described with respectto a
proxy provisioned through DNS that can change HTML (e.g.,
include the loader as previously described herein), embodi-
ments are not so limited. In particular, in some embodiments,
the HTML is cached and modified offline rather than being
dynamically altered by a proxy server.

Asillustrated in FIG. 13, the computer system 1300, which
is a form of a data processing system, includes the bus(es)
1350 which is coupled with the processing system 1320,
power supply 1325, memory 1330, and the nonvolatile
memory 1340 (e.g., a hard drive, flash memory, Phase-
Change Memory (PCM), etc.). The bus(es) 1350 may be
connected to each other through various bridges, controllers,
and/or adapters as is well known in the art. The processing
system 1320 may retrieve instruction(s) from the memory
1330 and/or the nonvolatile memory 1340, and execute the
instructions to perform operations described herein. The bus
1350 interconnects the above components together and also
interconnects those components to the display controller &
display device 1370, Input/Output devices 1380 (e.g., NIC
(Network Interface Card), a cursor control (e.g., mouse,
touchscreen, touchpad, etc.), a keyboard, etc.), and the
optional wireless transceiver(s) 1390 (e.g., Bluetooth, WiF1i,
Infrared, etc.). In one embodiment, the client devices 110A-1,
the service server 125, the proxy server 120, and/or the origin
servers 130A-L can take the form of the computer system
1300.

Embodiments of the invention described herein improve
performance of loading web resources. In some embodi-
ments, client-side scripts included in the HTML are deferred
from loading until the rest of the HTML content is loaded
thereby reducing the perceived loading time since the core of
the web page is loaded. Thus, the core content of the HTML
page is loaded and then the client-side scripts are loaded. In
some embodiments, multiple object queries (e.g., multiple
client-side script queries) are collected into a single TCP
request to the proxy server thereby reducing the time taken by
initiating multiple TCP requests for multiple resources. In
addition, the responses for the multiple object queries are
streamed to the client network application through the single
TCP connection as they are retrieved, potentially asynchro-
nously.

While embodiments have been described with reference to
requesting multiple client-side script objects into a single
TCP request to the proxy server and the proxy server stream-
ing back the results as it retrieves them through that single
TCP connection, it should be understood that embodiments
are not limited to client-side script objects. In some embodi-
ments, any object that has a “src” attribute may be packaged
into a request (along with or separate from the request for the
client-side script objects). In such embodiments, instead of
the client network application executing the client-side script
object, the client network application typically recreates a
DOM object and inserts the object into the correct location on
the page. For example, if the object is an image, the client
network application creates a DOM object for the image and
inserts it into its original location on the page.

The techniques shown in the figures can be implemented
using code and data stored and executed on one or more
computing devices (e.g., client devices, servers, etc.). Such
computing devices store and communicate (internally and/or
with other computing devices over a network) code and data

20

25

40

45

50

22

using machine-readable media, such as machine-readable
storage media (e.g., magnetic disks; optical disks; random
access memory; read only memory; flash memory devices;
phase-change memory) and machine-readable communica-
tion media (e.g., electrical, optical, acoustical or other form of
propagated signals—such as carrier waves, infrared signals,
digital signals, etc.). In addition, such computing devices
typically include a set of one or more processors coupled to
one or more other components, such as one or more storage
devices, user input/output devices (e.g., a keyboard, a touch-
screen, and/or a display), and network connections. The cou-
pling of the set of processors and other components is typi-
cally through one or more busses and bridges (also termed as
bus controllers). The storage device and signals carrying the
network traffic respectively represent one or more machine-
readable storage media and machine-readable communica-
tion media. Thus, the storage device of a given computing
device typically stores code and/or data for execution on the
set of one or more processors of that computing device. Of
course, one or more parts of an embodiment of the invention
may be implemented using different combinations of soft-
ware, firmware, and/or hardware.

While the flow diagrams in the figures show a particular
order of operations performed by certain embodiments of the
invention, it should be understood that such order is exem-
plary (e.g., alternative embodiments may perform the opera-
tions in a different order, combine certain operations, overlap
certain operations, etc.).

While the invention has been described in terms of several
embodiments, those skilled in the art will recognize that the
invention is not limited to the embodiments described, can be
practiced with modification and alteration within the spirit
and scope of the appended claims. The description is thus to
be regarded as illustrative instead of limiting.

What is claimed is:

1. A method in a server for improving loading of web
resources, the method comprising:

receiving a first request from a client network application

for a Hypertext Markup Language (HTML) document,
wherein the first request identifies a first domain that
hosts the HTML document;

retrieving the requested HTML document, wherein the

retrieved HTML document includes,

afirst reference to a first object that is located at a second
domain, and

a second reference to a second object that is located at a
third domain;

modifying the HTML document including inserting a cli-

ent-side script loader or a reference to the client-side

script loader into the HTML document, wherein the

client-side script loader is configured to, when executed

by the client network application, perform the follow-

ing:

initiate a single Transmission Control Protocol (TCP)
connection with the server, and

transmit a single second request to the server over the
single TCP connection for the first object and the
second object; and

transmitting the modified HTML document to the client

network application.

2. The method of claim 1, further comprising:

receiving the single second request over the single TCP

connection from the client network application;
retrieving the first object and the second object; and
transmitting the first object and the second object to the
client network application in a single first response over
the single TCP connection.

US 9,342,620 B2

23

3. The method of claim 2, wherein the first object and the
second object are included in the single first response and
transmitted to the client network application as they are
retrieved regardless of an order in which they are retrieved.

4. The method of claim 2, wherein retrieving the first object
includes determining that the first object is in cache and has
not expired and retrieving the first object from the cache.

5. The method of claim 2, wherein retrieving the second
object includes,

determining that the second object is not in cache or is in

cache but expired;

transmitting a third request to an origin server that hosts the

first object; and

receiving a second response from the origin server that

includes the first object.

6. The method of claim 1, wherein prior to transmitting the
modified HTML document to the client network application,
automatically modifying the first reference and the second
reference such that the client network application will not
request the first object and the second object respectively until
the client network application executes the client-side script
loader.

7. The method of claim 6, wherein the client-side script
loader is configured to be executed by the client network
application only after the client network application has com-
pleted loading the rest of the HTML document.

8. The method of claim 1, wherein the first request and the
single second request are received at the server as a result of
a Domain Name System (DNS) request for the first domain,
second domain, and third domain resolving to an IP address
of the server.

9. A non-transitory machine-readable storage medium that
provides instructions that, when executed by a processor of a
server, cause said processor to perform operations compris-
ing:

receiving a first request from a client network application

for a Hypertext Markup Language (HTML) document,
wherein the first request identifies a first domain that
hosts the HTML document;

retrieving the requested HTML document, wherein the

retrieved HTML document includes,

afirst reference to a first object that is located at a second
domain, and

a second reference to a second object that is located at a
third domain;

modifying the HTML document including inserting a cli-

ent-side script loader or a reference to the client-side

script loader into the HTML document, wherein the

client-side script loader is configured to, when executed

by the client network application, perform the follow-

ing:

initiate a single Transmission Control Protocol (TCP)
connection with the server, and

transmit a single second request to the server over the
single TCP connection for the first object and the
second object; and

transmitting the modified HTML document to the client

network application.

10. The non-transitory machine-readable storage medium
of'claim 9, wherein the non-transitory machine-readable stor-
age medium further provides instructions that, when executed
by the processor of the server, cause said processor to perform
operations comprising:

receiving the single second request over the single TCP

connection from the client network application;
retrieving the single object and the second object; and

10

15

20

25

30

35

40

45

50

55

60

65

24

transmitting the first object and the second object to the
client network application in a single first response over
the single TCP connection.

11. The non-transitory machine-readable storage medium
of'claim 10, wherein the first object and the second object are
included in the single first response and transmitted to the
client network application as they are retrieved regardless of
an order in which they are retrieved.

12. The non-transitory machine-readable storage medium
of claim 10, wherein retrieving the first object includes deter-
mining that the first object is in cache and has not expired and
retrieving the first object from the cache.

13. The non-transitory machine-readable storage medium
of claim 10, wherein retrieving the second object includes,

determining that the second object is not in cache or is in

cache but expired;

transmitting a third request to an origin server that hosts the

first object; and

receiving a second response from the origin server that

includes the first object.

14. The non-transitory machine-readable storage medium
of claim 9, wherein prior to transmitting the modified HTML
document to the client network application, automatically
modifying the first reference and the second reference such
that the client network application will not request the first
object and the second object respectively until the client net-
work application executes the client-side script loader.

15. The non-transitory machine-readable storage medium
of'claim 14, wherein the client-side script loader is configured
to be executed by the client network application only after the
client network application has completed loading the rest of
the HTML document.

16. The non-transitory machine-readable storage medium
of claim 9, wherein the first request and the single second
request are received at the server as a result of a Domain
Name System (DNS) request for the first domain, second
domain, and third domain resolving to an IP address of the
server.

17. A server for improving loading of a web page, the
server comprising

a processor; and

anon-transitory machine-readable storage medium config-

ured to store instructions that, when executed by the
processor, cause said processor to perform the follow-
ing:
receive a first request from a client network application
for a Hypertext Markup Language (HTML) docu-
ment, wherein the first request identifies a first domain
that hosts the HTML document;
retrieve the requested HTML document, wherein the
retrieved HTML document includes,
a first reference to a first object that is located at a
second domain, and
a second reference to a second object that is located at
a third domain;
modify the HTML document including an insertion of a
client-side script loader or a reference to the client-
side script loader into the HTML document, wherein
the client-side script loader is configured to, when
executed by the client network application, perform
the following:
initiate a single Transmission Control Protocol (TCP)
connection with the server, and
transmit a single second request to the server over the
single TCP connection for the first object and the
second object; and

US 9,342,620 B2

25
transmit the modified HTML document to the client
network application.

18. The server of claim 17, wherein the non-transitory
machine-readable storage medium further is configured to
store instructions that, when executed by the processor of the
server, cause said processor to perform the following:

receive the single second request over the single TCP con-

nection from the client network application;

retrieve the first object and the second object; and

transmit the first object and the second object to the client

network application in a single first response over the
single TCP connection.

19. The server of claim 18, wherein the first object and the
second object are included in the single first response and are
to be transmitted to the client network application as they are
retrieved regardless of an order in which they are retrieved.

20. The server of claim 18, wherein retrieval of the first
object includes the following operations to be performed,

determine that the first object is in cache and has not

expired, and

retrieve the first object from the cache.

21. The server of claim 18, wherein retrieval of the second
object includes the following operations to be performed,

5

10

15

20

26

determine that the second object is not in cache or is in

cache but expired;

transmit a third request to an origin server that hosts the

first object; and

receive a second response from the origin server that

includes the first object.

22. The server of claim 17, wherein prior to transmitting
the modified HTML document to the client network applica-
tion, automatically modify the first reference and the second
reference such that the client network application will not
request the first object and the second object respectively until
the client network application executes the client-side script
loader.

23. The server of claim 22, wherein the client-side script
loader is configured to be executed by the client network
application only after the client network application has com-
pleted loading the rest of the HTML document.

24. The server of claim 17, wherein the first request and the
single second request are received at the server as a result of
a Domain Name System (DNS) request for the first domain,
second domain, and third domain resolving to an IP address
of the server.

